Theory of energy transfer between molecules near solid state particles
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The theory of energy transfer between a donor molecule and an acceptor molecule near a solid
state particle is developed. The particle is modeled as a spheroidal shape and the molecules are
allowed to be at arbitrary positions in space. It is found that there exist zones of activity in which
the molecules display significantly enhanced energy transfer. We develop a formalism which
allows us to describe nonradiative and radiative decay and energy transfer in a unified manner.

I. INTRODUCTION

Interest in energy transfer between molecules stems
from the fact that it plays a fundamental role in such phe-
nomena as quenching of luminescence, sensitizing of lumi-
nescence, photosynthesis, and fluorescence phenomena in
general. Early theoretical attempts at describing energy
transfer were put forth by Perrin' and Perrin? in which the
long-range electromagnetic interaction was identified as the
mechanism responsible for energy transfer. Later Vavilov®
incorporated these ideas into a phenomenological theory.
The first successful theory was proposed by Forster* and
later elaborated on by Dexter® and others.® The basic idea
was that it is the dipole—dipole interaction between the donor
molecule and the acceptor molecule that causes a simulta-
neous quantum transition in which the donor molecule is
deexcited and the acceptor molecule is excited. A simple
quantum mechanical theory based on the Fermi Golden
Rule was developed which allowed the energy transfer rate
to be expressed in terms of the emissivity of the donor mole-
cule and the absorptivity of the acceptor molecule. The the-
ories that have been developed have focused primarily on
homogeneous media, usually solutions. In this paper we
shall extend the theory to a particular class of inhomogen-
eous media, namely systems in which granular particles may
be present. Our goal shall be to develop a theory of energy
transfer between donor and acceptor molecules in the pres-
ence of such particles.

In recent years attention has focused on a variety of
optical processes that take place on molecules in the vicinity
of solid state particles. It was found that the solid state parti-
cle can strongly modify the optical process. For example, in
Raman scattering the cross section can be enhanced by as
much as six orders of magnitude’ over what it would be in
the absence of the solid. It is currently believed that a large
component of the enhancement mechanism is of purely elec-
trodynamic origin,® although there is also evidence for pure-
ly chemical factors as well. In the electromagnetic process
the local field in the vicinity of the molecule is modified by
the ability of the particle to concentrate electric field lines, as
in a lighting rod, as well as by the particle’s ability to store
electromagnetic energy, particularly if it is resonantly excit-
ed. The electromagnetic theory has also been applied to ex-
plaining enhanced fluorescence,’ photochemistry,'® and sec-
ond harmonic generation.
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In previous work!' we have shown how the Forster—
Dexter theory of energy transfer may be generalized to in-
clude the presence of a solid state particle and made some
simple estimates of the size of the effect. However we re-
stricted our attention to the somewhat idealized case of a
collinear geometry, in which the molecules and the symme-
try axis of the particle were all aligned and the dipoles of the
molecules were also parallel to the axis. This left open the
qualitative question as to how general the results were and
the quantitative question as to how to take off-axis effects
into account. One of the results of our present work, as we
shall see, will be to define zones of activity in which the
molecules behave as if they were on the axis. The present
work will also generalize our previous work'? on radiative
and nonradiative lifetimes of molecules near particles to the
case where the molecules may be at arbitrary positions in
space with arbitrary directions for their dipoles.

The basic mechanism for energy transfer to be devel-
oped here differs from energy transfer mechanisms in homo-
geneous media in that it is a coherent process. Transfer
mechanisms involving incoherent processes like exciton mi-
gration'® view transfer as coming about by a kind of random
walk process in which the energy jumps from site to site. In
the mechanism discussed here the transfer is from the donor
to the acceptor by the agent of coherently exciting the parti-
cle. Because of the coherent virtual excitation of the particle
the energy transfer is able to occur very rapidly. We shall
find that the energy transfer rate can be enhanced by many
orders of magnitude over what the rate would be in the ab-
sence of the particle.

The paper is arranged as follows. In Sec. II we develop
the theory of energy transfer. In Sec. IIT we develop the the-
ory of nonradiative decay and establish its connection to the
energy transfer process. In Sec. I'V we focus our attention on
radiative decay. Finally, in Sec. V we present the results of
our computations and discuss them.

Il. THEORY OF ENERGY TRANSFER

We shall study the transfer of energy between a donor
molecule (d ) and an acceptor molecule (@) in the vicinity of a
solid state particle. The particle will be taken to have a spher-
oidal shape with semimajor axis ¢ and semiminor axis b. It
will be assumed to possess a frequency-dependent dielectric
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function €{w). The donor and acceptor molecules will be rep-
resented by point electric dipoles u, and y, at locations r,
and r,, respectively. It will be assumed that all distances of
relevance (a,b,7,, and r,) are small compared with the wave-
length of light whose frequency corresponds to molecular
electronic transitions of interest, so that retardation effects
may be neglected. On the other hand, it will be assumed that
the distance scales are sufficiently large that nonlocal dielec-
tric effects are not of significant importance.

Let us take the z axis parallel to the symmetry axis (the
major axis) and introduce prolate spheroidal coordinates &,
1, and ¢. The surface of the particle will be denoted by
£ = £, where £, = a/f and f= (a® — b?)"/2. While this de-
scription more naturally applies to prolate shaped particles,
the generalization to oblate structures may readily be ob-
tained by analytic continuation. The coordinates of the do-
nor and acceptor molecules will be denoted by (£, 174, ¢,4)
and (£,, 77,, #,). The Cartesian coordinates are related to the
spheroidal coordinates by

x=flE*— 1)1 — 7] cos 4, (2.1a)
y=rIE* — 11 —7%)]%sin 4, (2.1b)
z=f&n. (2.1c)

Before developing the theory for the general case, con-
sider first the situation in the absence of the particle. Forster
and Dexter have described the energy transfer rate from the
donor to the acceptor molecule in terms of Fermi’s Golden
Rule, taking the dipole~dipole interaction as the perturba-
tion responsible for driving the transition. The donor mole-
culeisinitially in an excited state |f;) with energy €,, and falls
to a lower state |i;) with energy €, . At the same time the
acceptor molecule is promoted from an initial state |i,) to
some excited state |f, ), with corresponding energies €, and
€; , respectively. Because of the presence of a high density of
vibrational levels associated with the electronic states we ex-
pect some distribution of initial donor and acceptor levels.
These will be described by the distribution functions Fj( f;)
and F,(i,). The average transition rate is given by

Ko= 27” 3 3 Al faIRulillia L Vol

X6(e;, + €, —€, —¢€), (2.2)
where U, is the dipole—dipole interaction
‘m, — 3y P, o P
U,= Ba * b Ra * 70 (2.3)

"3 b
and r =r; —r, is the intermolecular displacement vector.
Let

(falwalfa) = xaliz, f)m,
and

(falWalia) = ¥ (foria)m,, (2.4b)

where m,; and m, are transition moments and y,(i,, f;) and
Xa{ /2, ) are Franck—Condon factors. Then U, may be writ-
ten as

(g fo | Uolfals) = mamy xalias o)X o( fosia)Aos

where A, is an angular-dependent factor

(2.4a)

(2.5)

A A A AN A
my-m, —3my -tm, - F
Ay = >
Then, introducing an auxiliary integration, we obtain

Ko=27A} f do 3 Folia)[Yalforla)*|ma |2

(2.6)

Xb(e;, — €, + fiw) fz Fy(f)xalias J2)Imal?

X8le;, — €;, — fiw), 2.7)
which may be rewritten as
9A 2 4 oo I"
Ko=220C f do 20 d0) 2.8)
87 J_o 0]

where ¢, () is the electromagnetic absorption cross section
for the acceptor molecule

0,(0) =272 5 F i lgalfuso) P [8le, — € + o)

(2.9)

and I', () is the emission rate per unit frequency of the do-
nor

Fy= %wg—%Fd(fd”Xd(id’fd”zlmd|28(6f4 — €, — fiw).
(2.10)

Let us now introduce the particle. Since Eq. (2.8) in-
volves an integration over angular frequencies w associated
with both the donor and acceptor transitions it is reasonable
to assume that the dielectric properties of the solid at fre-
quency @ will now enter the formalism. What we need is a
generalization of the expression for the dipole—dipole inter-
action U,. To obtain this we must first solve the general elec-
trostatic problem presented by having two point dipoles in
proximity to a spheroidal particle. The electrostatic poten-
tial inside the particle (£ < £,) may be expanded as

P ,d) = < Y [Aum cos mé + B,, sinmg]
n=0m=0
XP ()P )
and the potential outside the particle (£ > &) as

Peng)= S X [Aim cosmp+ B, sinmd]

n=0m=20

XQEP ) + Py + P, (2.11)

Here P(¢) and Q (&) denote associated Legendre func-
tions of the first and second kind, respectively. The dipolar
potentials associated with isolated donor and acceptor mole-
cules are denoted by ®, and @, . Expansions for these poten-
tials may be obtained starting with the Coulomb Green func-
tion

(2.11a)

o= 3, 3 Fm PREIRTE,)
XP ()P 7(n')cos mig — &), (2.12)
where
Fan = (=12 = 8,02n + 1) [2=2RF o1y
nm f m, (n n m)l
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and§_ =min(§,¢')and &, = max(£,£ ). The potential due
to a dipole p; located at r, is
. r J—
q>d_—__p‘__(_f;’_)=p,.vd 1 (2.14)
Ir—ry] Ir—r4

The components of the gradient operator may be written as
_$s 0 M 9 b d
“ " hy, Ok hy, Oy hy, 08,
where Ed, 74, and @, are unit vectors and heosh, ,and Ay,
are metric coefficients defined by

(2.15)

he, =fEF =€ — 1] (2.16a)
h,, =S5 —m/(1—52)]" (2.16b)
hy, =f{EL— DL —93)]"7 (2.16¢)
SO
= - Mg,
P, = F,. m m pm
= 2 & {hgd 3, [FrE<ICTE 1P

X P{na)cos m(d — @)

.“n,,

to P& QWE, P T(m)

Na
mp ba

X [P7(n4)]'cos mig — da) + PREIQTES)

X PT(PFnalsin mig — 4] 217)

A similar formula holds for ®, with d replaced by a.

We now demand that & be continuous at the surface of
the dielectric and also that the normal component of the
electric displacement vector be continuous there. This al-
lows us to solve for the unknown constants 4 ,,, and B/,

appearing in Eq. (2.11b):

A','"‘ 6((0) m m ’
(B;,m) "m( ) an Pn(go)[Pn(gO)]

> ([’;i [Q;"(f.-)]’P’:(m)+%’1'-Q'n"(§.-)[P,."‘(m)]'}
i=ad £ 7
cos me,; Ky, " sin m¢)
X(sinm¢,.) —Q ()P 7(m:) ( 0s md, ),(2-18)
where
A,..(0) = €@)Q NPT o)]] — P o) [ 2 7(60)] -
2.19)

The interaction energy is obtained from the expression
U= ~£[|‘.‘a°Ea+p’d'Ed]' (2'20)

Here E, is the electric field at the position of the acceptor
molecule and E, is the corresponding field at the donor mol-
ecule. These fields are obtained from Eq. (2.11b) using

E= -V, {2.21)
and omitting the terms ®, of Eq. (2.11b) when computing E,,
and ®, when computing E;. Thus we may write

U=U,+ AU (o), (2.22)
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where U, is given by Eq. (2.3) and

AU@) =3[t - VPl y, + 1o - VR, ], (223)
where
$=3 S [A}ncosmp+ B}, sinm]Qm(E)P ).
n=0m=0
(2.24)

Here ® is the potential just due to the induced charges of the
dielectric and AU (w) is the additional interaction energy
between the donor and acceptor caused by the presence of
the nearby particle. Thus,

AU(‘")—— NP

jdan Om=0

( " gme e,

hy,
sinmg; + B, cos m¢, ]
73

X[ — Ao

{’,: Q7161 PEm) + 22 QTE) [P 7im,) ] ]
g

X [4 ., cosmg, + B}, sin m¢ DR (2.25)

Equation (2.25) contains three types of terms: terms bilinear
in py and p,, terms quadratic in p;, and terms quadratic in
K- Only the terms bilinear in p,; and p, cause energy trans-
fer. The other terms, however, are responsible for modifying
the decay rates of the donor and acceptor molecules and will
be studied later. We will denote the bilinear terms collective-
ly as AU, ().

When the spheroidal particle is in proximity to the do-
nor—-acceptor pair the transition rate is

K=—2§Z 3 P L) S U+ A | S )

Xéle,, + €, —€;, —¢€). (2.26)
In place of Eq. (2.8) we now obtain
S A (w)|? 1y
k= f o 1) Zelellao) (2.27)
[7)

The frequency dependent factor 4 (w) replaces the factor 4,
of Eq. (2.6) and is defined as

A=Ay + Ad, (2.28)
where
AM=p, AM®* .4, (2.29)
and AM % is a tensor which may be written as
=3 3 T,,8%Pnm). (2.30)
n=0m=0
Here
ool g preaPrEN]" 231)

" .m.( )

and the spheroidal components of the 014 tensor are

Qf = [he b, ] 7 QRENT [QTEN P R(na)P R(ma)
Xcosm(dy; — P,), (2.32a)

0% = [h,,h, 7' QENQ TENP M) [Prna)]’
Xcos m{¢; — d,), (2.32b)
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Q% = [he,he,]7'm* QRENQ TENP TMa)P (0,)
X cos m(d, — b,), (2.32¢)
23 = [he,hy, ] 7' QW) QR ENIP M) [P (ma)]’
X cos m(gy — @), (2.32d)
ng= [Aehy, ] “'m[Q (€)' QNENP (4P (n,)
Xsinm(g; — @), (2.32¢)
02354 = [hy,hy,] "' MR NENQ TN PR (Ma)]'P ()
Xsin m(¢; — @,). (2.32f)

Expressions for .Q,,E , 0% and Q » are obtained from the last
three equations by mterchangmg d and a. Similarly, we may
express A4, in spheroidal coordinates by writing

Ag=f1, - My-p1,, (2.33)
where
=3 3 F,Knm) (2.34)

n=0m=0
L d
and A is a tensor whose spheroidal components are

Age = [he,he, 1 7 [PRE I [QRES )PP (M)
Xcos migy — ¢,), (2.35a)
A’T" = [h"ld "Ta]_IPm(g )Qm(§>)[Pm(77d)] [Pm(”a)]

Xcos m(g, — @,), (2.35b)
Mgy = [Rg,hs,] 7 'm*PE QT WP (04)P ()
X cos m(g, — ¢,, )s {2.35¢)

= [he,h n..]“ [P"'<§<)Q'"(§>)]P'"(nd)[P'"m.,)]

Xcos m(@y — ¢., )
(2.35d)

gy = [hehs,]'m =2 [P )QTE. )P ()P TR,)
%,

Xsinm(d; — ¢.),
(2.35€)
Ay = [Anghs, ] 'mPIE )QTE, P I [PT0)]’
Xsinm(g; — @,). (2.35)
Expressions for A,,, A4, and A, are obtained from the last
three equations by interchanging 4 and a. In the above, & _
=min(,,£,)and £, = max(£,,£,). The spheroidal compo-

nents of the dipole unit vectors are related to the Cartesian
components by

fe=L [ cosp+i,sing] + L, (236)
h, he

i =hl [fi. cOS 6 + ft, sin 4] -—f—f-ﬁ,, (2.36b)
'3 L]

My = —p, Sing +p, cos §. (2.36c¢)

A comparison of Eq. (2.27) to Eq. (2.8) shows that the
integrands differ by a factor

3653
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4,
We shall refer to this quantity as the enhancement factor. In
addition to its frequency dependence it also depends on the
locations of the molecules, their orientation, and the size,
shape, and composition of the particle.

The present theory may be adapted somewhat so that it
may also apply to intramolecular energy transfer. Consider,
for example, a molecule which is in some vibrational state
associated with a given electronic state. Assume this mole-
cule also possesses another electronic state associated with a
given electronic state. This level is embedded in the vibra-
tional manifold associated with lower electronic states and if
the latter are dense enough intramolecular radiationless
transitions usually occur. Consider now the effect of the
presence of the dielectric particle on such transitions. Since
we now will be concerned with one molecule rather than
two, we must talk in terms of donor modes and acceptor
modes of that given molecule. The physical location of these
modes are given by r, = r, but there still can be independent
transition dipole moments associated with the different elec-
tronic states.

Unlike the case of intermolecular energy transfer, the
direct dipole—dipole interaction between the modes is no
longer an appropriate concept. Since the modes are attached
to the same molecule, the idea of representing them by point
dipoles which will then interact is not very meaningful.
Rather their direct interaction is incorporated into the Ha-
miltonian which will describe the internal dynamics of the
isolated molecule. However, it is meaningful to talk about
the donor and acceptor modes being represented by point
dipoles when describing their interaction with the solid par-
ticle and indirectly with each other through the presence of
the solid. The interaction to be used in place of the dipole—
dipole interaction is then simply AU (w) given by Eq. (2.25).
One simply sets (§,,74,04) = (£,:7.,0,). The rate of energy
transfer induced by the coupling is

R(w)= (2.37)

K= 98%[: % A4 (@) 3 0,(@)T (),

where AA is given by Eq. (2.29) and o, () is the absorption
cross section for the acceptor band and I',(w) is the corre-
sponding emission function for the donor band. This rate K’
is in addition to the normal intramolecular energy rate that
may be present for the isolated molecule. In Eq. (2.38) we
have included now a summation over all intermediate elec-
tronic states, where ¢, (w) and I',; (w) are the line shapes relat-
ed to virtual transitions involving these states. The reason for
this summation becomes apparent if we compare the For-
ster—Dexter matrix element of Eq. (2.2) with the correspond-
ing matrix element for the intramolecular case. In the former
case the interaction is bilinear in the donor and acceptor
dipole operators, so it only deexcited the donor molecule and
excited the acceptor molecule. Inithe case of intramolecular
energy transfer, where the donor and acceptor are the same
molecule, the interaction is quadratic in the dipole operator.
Thus, by inserting a complete set of states, we see that we
may first virtually excite the molecule and then virtually
deexcite the molecule to some final electronic state.

(2.38)
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lIl. NONRADIATIVE DECAY

Let us now focus our attention on the other terms ap-
pearing in Eq. (2.25) which were previously neglected. These
terms are quadratic in p; or p,. We shall show that they are
simply related to the nonradiative decay rates of the mole-
cules. Let us consider one molecule at a time. Let

U= —4ipi-E; (3.1)

Note that u, is assumed real, but we have written p¥ in place
of p,, for reasons which will soon become clear. Consider
the quantity

r, = -’1? Im U, (32)

which has the dimensions of a frequency. For a point dipole
we may write the corresponding charge density as

pa= — - V8E—1,) (3.3)

as may readily be seen by computing the first moment of the
charge density:

jp,,x,dr

= — [V mamdie—raldr + | 8 = v
(3.4)

The first integral vanishes so we obtain

[ parde=pa, 35)

as conjectured. Consider next the integral

fp}@ dr= — f arv - (pi®s(r —r,))

out out

+ f S(r — r )u¥ - Vodr, (3.6)

where the region of integration is outside the particle. Again
the first integral vanishes and we obtain

f ptddr= —p, -E,. (3.7)

out

Thus we have

1 1
L,=tim{ —ypi Bl = [ pr@de (9

out

Using the Poisson equation, this becomes

V.E*

r,=Lm|e dr

2%

out

=Im—1—f v.(q>E*)dr—1mLfE* .V dr.
8mhi 8
out out

(3.9)

The last term vanishes while the first term can be converted
to an integral over the particle’s surface

r,=—Im f A, - E*® dS, (3.10)
8t

where 7, denotes an inward pointing normal. Using the

continuity of the normal component of D, this may also be

rewritten as

r,= ——1m [ 4, -D*ods,

8t
where 7, is an outward pointing normal and the integral is
now over a surface slightly inside the particle. Then convert-
ing the integral to one over the particle’s volume we obtain

(3.11)

1
;= —gImJ‘V-(fbD*)dr

=L1mfe|E|2dr. (3.12)
8ti .
Finally we use the relation

Ime=2"7 (3.13)

@
where o is the conductivity to obtain
1
T =—faE2dr. 3.14
=5 | Bl (.14

The interpretation of the right-hand side is that it is the pow-
er delivered to Ohmic heating divided by the photon energy.
This is the nonradiative decay rate if the magnitude of the
dipole is chosen to correspond to the molecule being excited
with one quantum of energy.

The expression for the nonradiative decay rate becomes

Iy=aolm ¥y 3 T,, Le 0% 0,
n=0m=0

Here (1% is given by Eqs. (2.32a)~(2.32f) but with a replaced
by d. A similar expression may be found for the nonradiative
decay rate of the acceptor by replacing d by a in the above
equation. We have expressed I'; in terms of the static polar-
izability a rather than in terms of the transition dipole so
that the classical nature of the formula is manifest. Thus we
have replaced |u, | by 2afiw.

We note in passing that the real parts of U, and U,, are
associated with the level shifts of the molecules due to the
interaction with the solid state particle.

(3.15)

IV. RADIATIVE DECAY

Just as the nonradiative decay of a molecule near a parti-
cle may be enhanced, the same is true of the radiative decay.
The donor molecule induces a dipole in the particle in re-
sponse to its own dipole. The coherent sum of these dipoles is
responsible for the net emission at the donor molecule fre-
quency. (In addition a similar effect can occur at the acceptor
molecule frequency.) In previous work we have derived for-
mulas for the enhanced dipole moment of the system for a
collinear geometry. The generalizations of this formula is
readily obtained from the previous formulas.

If we examine the system far away from the molecule or
particle we can describe the system as consisting of a dipole
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located at the origin: (£,,7,,¢,) = (1,0,0). The field due to
such a dipole may be obtained from Eq. (2.17) and is

¢=%Ql(§mmw"+%gi(§wn)

X [pg cos @ + p, sind]. (4.1)
On the other hand, an expression for ¢ has been given in Eq.
(2.11b). Substituting the values for 4, and B, of Eq.
(2.18) leads to an alternate expression for ¢ in terms of the

molecular dipole components. Equating the coefficients of
terms with similar angular behavior leads to the following:

He| |Fee Fey Fo||Fa

Baq | = Fvl{ le Fw B, | (4.2)
" Fye Fyp Fyy || py,

whereu, ,u, , and u,, are the donor molecular coordinates
and

F;g =fcos il P}(ﬂd)
€4
x{Piea + ).
(4.3a)
Fg,,=f°:s¢“ [Pn)]’
x[P}(éd)Jr‘A“‘ LEN[PLEN]'Q! (54)] (4.3b)
Fg¢ = —fSin¢d Pi(n,)
L]
{P € +i=2p :@o)[Pi(go)]'Q}(sm}. (4.3¢
F =hi§dPl(m)
x{ P+ ).
(4.3d)
Fro =3 (P
[Pl(g,,)+ S PUENIPIED) Ql(sm] (4.3¢)
Fw =0, (4.3)
Fe=L s;“ %4 piing)
174
[[P1(§d)] AN CHEAL
(4.3g)
Fpy =220 (PY0Y
x{Pie) + L=E PliEgIPIGI'Q1EN)] . (430)

3655
Sfeosé
Fyy = A
[
€ ) .
x[Pie PP ENT Q6] 430
The decay rate due to radiation may be written as
F.
Fa= r(r,,d a (4.4)
Ha

Here I'? , is the radiative decay rate of the free molecule and
I', ; is the rate in the presence of the particle.

V. RESULTS AND DISCUSSION

In the previous sections we have developed a theory for
the energy transfer between a donor and acceptor molecule
in the presence of a small solid state particle in the shape of a
spheroid. The energy transfer may be enhanced by having
the particle actively assist in the transfer process. Secondly,
the presence of the particle opens up decay channels which
would tend to compete with the energy transfer. A complete
theory of energy transfer must take these two aspects into
account.

In order to understand how energy transfer may be en-
hanced consider first the case of energy transfer in the ab-
sence of the particle. It is brought about by the dipole—dipole
interaction. The dipole operator of the donor molecule deex-
cites the donor while the dipole operator of the acceptor
molecule excites the acceptor. The strength of the interac-
tion falls off rapidly with distance, as r~* and the energy
transfer rate, which is proportional to the square of the ma-
trix element of this interaction, falls off as » ¢, If a solid state
particle is in the presence of the molecules, however, the
donor dipole will induce multipole moments on the particle.
In particular, the dipole that is induced on the particle may
be much larger than the donor dipole itself. This pheno-
menon is partly responsible for the enhanced electrodynam-
ic processes on rough surfaces or near small particles, in-
cluding surface-enhanced Raman scattering, enhanced
fluorescence, enhanced photochemistry and enhanced sec-
ond-harmonic generation. The degree of enhancement of the
dipole depends on the shape of the particle, the location of
the molecular dipole and whether or not a resonance of the
solid is excited. Once the dipole (and other multipoles) have
been excited in the particle, the fields set up by the moment(s)
can couple to the acceptor dipole and affect the energy trans-
fer. Whereas in the absence of the particle the rate of energy
transfer depends primarily on the molecule-molecule sepa-
ration, now the energy transfer depends primarily on the
molecule-solid distance. For a large particle size the mole-
cules may be rather far apart and still have rapid energy
transfer occur. However, if the molecules are far away from
the solid, then the solid has little influence on the transfer
process again. One of the main goals of this work is to define
precisely how the location of the molecules influence trans-
fer dynamics. We shall see the concept of “activity zones™
emerge.

We have developed side-by-side a theory for energy
transfer and for nonradiative decay as well as for radiative
decay. Just as the energy transfer depends sensitively on the
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location of the molecules relative to the particle, so do the
decay losses. At those locations where there will be large
internal fields in the solid, one would also expect large Oh-
mic losses to occur, as we shall see.

In Fig. 1 we show the geometrical arrangement of the
molecules and the particle. Figure 2 shows the dependence
of the enhancement factor R of Eq. (2.37) on acceptor mole-
cule location (r,,0,,44) = (125 A,0°,0%, (6,.8,) = (180°,0%,
(6,,9,,) = (0°,0°), and (6, ,é, ) = (0°,0°). The semimajor axis
of the spheroid was a = 100 A and the semiminor axis of the
spheroid was b = 50 A. The particle is made of silver and
curves for several energies fiw are shown. We note that when
the acceptor molecule is close to the particle the enhance-
ment rate grows fairly large, i.e., by as much as five or more
orders of magnitude. As the acceptor is moved away from
the particle the falloff is at first rapid, but tapers off to a
slower falloff at larger distances. Significant enhancements
persist out to 7, = 500 A, corresponding to a donor-accep-
tor separation of 725 A. There is also evidence in Fig. 2 for a
strong resonance at fiw = 3.12 eV. This is close to the energy
of the dipolar plasmon for a 2:1 prolate spheroidal silver
particle.

In Fig. 3 we study the effect of rotating the acceptor
dipole orientation, still keeping everything else in a collin-
ear geometry. Here (r,,0,,8,) = (125 A,0°0°, (r..6,.4.)

=(125 A,180°09, 0,,8,,) = (0°0°), 4, =0 and (a,b)
= (100 A,50 A). The energy is held fixed at #iw = 3.0 eV.
Two curves are drawn, the solid curve is |4 (w)|?, where 4 ()

< 2b

A 4

FIG. 1. Geometrical arrangement of donor (d ) and acceptor (@) molecules.
The locations of d and a are specified by spheroidal coordinates (r,,8,,4,)
and (7,,0,,4.), respectively. The donor and acceptor dipoles have orienta-
tions given by the polar angles (6,,,,4,,) and (6, ,4,. ), respectively.

)
105 B
312eV
103 - 1.76
R 0.77
101 ~ 4.24
1 i ]
100 300 500

-]
Iy (A)
FIG. 2. Enhancement factor R as a function of acceptor location r, for a
collinear geometry. The particle is a prolate silver spheroid with a 2:1 aspect

ratio. Curves are drawn for several energies #». The donor molecule is held
fixed 25 A from the tip of the particle.

is the interaction energy associated with unit dipoles near a
particle and is given by Egs. (2.28) and (2.29). The dashed
curve is |4,|% where A4, is the interaction energy of two free
unit dipoles. We note that in both cases the interaction ener-
gy is a maximum for a parallel alignment and falls to zero as
the acceptor molecule is rotated to a perpendicular configu-
ration. The interaction strengths are seen to differ by more
than two orders magnitude. The enhancement ratio
R = |4 (w)/A,|? is found not to depend on the acceptor angle
orientation, as is shown in Fig. 4. The parameters are the
same as in Fig. 3, but curves are given for several energies,
fico.

In Fig. 5, we plot the enhancement ratio as a function of
the shape of the particle, keeping a collinear geometry. Here
a was held fixed at 100 A but b was allowed to vary between
10A (a needle-like structure) to 80 A (a nearly spherical
structure). The donor and acceptor molecules had the same
parameters as in Fig. 3. Curves are drawn for several ener-

10_8 -
10-10 ek

10712

A2art_).
units

10—14—

10—16- S

1018 1

o 30 60 90
8u,(deg)

FIG. 3. Absolute square of the interaction energy as a function of acceptor
dipole orientation for an otherwise collinear geometry. The solid curve is
with the particle present and the dashed curve is with it absent. The donor
and acceptor molecules are held 25 A away from the opposite tips of a pro-
late 2:1 silver spheroid.
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FIG. 4. The enhancement ratio as a function of dipole orientation for the
case of Fig. 3. Curves for several energies are shown.

gies. We note the presence of resonance structure appearing
in the optical region of the spectrum. As the particle’s shape
is varied the multipolar resonances of the particle sweep
through the spectrum. Evidence for dipolar and quadrupo-
lar resonances appear in this figure. Whenever the resonance
peak overlaps with the donor emission band and the accep-
tor absorption band, we would expect strong energy transfer
to occur, as should be clear from an examination of the inte-
grand of Eq. (2.27). This should be kept in mind when at-
tempting to design a particle to optimize the energy transfer.

In Fig. 6 we vary both the angular location of the donor
and acceptor molecules, keeping their orientations antipar-
allel to each other. The angular location is specified by giving
the spheroidal coordinate 7. The two are related by the for-
mula

tan 6 = —— [(£% — 1)1 — 7?)] "2 (5.1)
&m

A plot is made of R (w) vs 7, with 5, = — 7,. Here the
molecules are allowed to move over the spheroidal surfaces
which pass through the points z = + 125 A along the sym-
metry axes. The molecules are oriented parallel to the nor-
mals to these spheroidal surfaces. Curves are drawn for sev-
eral values of b, keeping a fixed at 100 A. We note that as the
molecules are moved away from the vicinity of the sharp tips
of the spheroid, the enhancement factor starts to fall off dra-

107
fw
3. \Y
105_ 00e
R

1057 k
B e

10'F 412
lm
20 20 60 80
b(A)

FIG. 5. The enhancement ratio as a function of semiminor axis size b for the
collinear geometrical arrangement of Fig. 3. Curves are presented for sever-
al energies.

10°

10

103

5 i 1 1 1
1.0 08 06 04 0.2 0
Ta

10

_ FIG. 6. The enhancement ratio plotted against the spheroidal coordinate

associated with angular location of the donor and acceptor. The geometry is
depicted in the inset. Curves are presented for several values of b, for fixed a.

matically. In some cases, there may even be deenhancement
occuring. The largest degree of falloff at small %, values
occurs for the sharpest spheroid.

The general trends exhibited by Figs. 2 and 6 are consis-
tent with the existence of activity zones near the tips of the
spheroid. If the donor and acceptor molecules lie within
these activity zones they are able to couple to the solid effec-
tively and efficient energy transfer ensues. If either or both of
the molecules lie outside these zones the coupling is dimin-
ished and the energy transfer enhancement is quenched.
This is in agreement with a lightning rod picture in which
electric field lines tend to be concentrated near the sharpest
features of a structure. The size of the activity zone may
crudely be taken as the characteristic size of the sharpest
feature on the solid. For the spheroid this is the radius of
curvature of the tip: 7, = b */a. Thus, if the molecules both
lie within a distance 7, of either tip strong energy transfer
will occur. If the molecule is allowed to move out of the
activity zone in the radial direction, as in Fig. 2, or in an
angular direction, as in Fig. 6, the coupling drops off dra-
matically. Nevertheless, there is still some remnant long
range nature of the transfer due the presence of the particle,
even when the activity zone is left. This is because it is the
distances to the solid that are now more significant than the
interparticle distances. It is not until the distance from the
particle is large compared with the size of the particle that
these will become unimportant.

In Fig. 7 we keep the donor fixed along the symmetry
axis and move the position of the acceptor over a spheroidal
surface. The donor dipole is fixed parallel to the symmetry
axis and the acceptor dipole is perpendicular to the spheroi-
dal surface, so it varies as the acceptor molecule is moved.
The geometry is shown in the inset. Here (r,,8,,8,) = (125
A,180°0° ¢, = 0", (6,,.8,,) = (0°0°), and r, = 125 A for 7,
= + 1, corresponding to 8, = 0°. Curves are shown for sev-
eral values of the energy. As before,a = 100A and b = 50 A.
The results here are consistent with those of Fig. 6, but the
falloff with 7, is less dramatic. Since only one molecule is
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1.0 0.8 0.6 0.4 0.2 0
la

FIG. 7. Enhancement ratio as a function of acceptor location on a spheroi-
dal surface. The acceptor dipole is perpendicular to the spheroid. The geom-
etry is depicted in the inset. Curves are drawn for several energies.

being taken out of the activity zone while the other molecule
remains inside, this is to be expected.

In Fig. 8 a graph is made of the enhancement ratio as a
function of energy for spheroids of several different shapes.
Here the molecules were held as in Fig. 3. In addition to the
resonance structure seen below the plasmon energy we also
see a region of deenhancement. The curves are presented
here for silver. Curves for other materials may be generated
by using the corresponding optical properties of those mate-
rials. Having studied the energy transfer rate in some detail,
let us now look at the behavior of the decay rate. This too we
expect to depend strongly on such factors as the molecular
location and orientation. In Fig. 9 we present the nonradia-
tive decay rate as a function of frequency for the same geo-
metrical arrangements as were used in Fig. 8. The dipole is
taken to be of unit strength. We see that when there is a
resonance in energy transfer there is also a peak in the decay
rate. Since nonradiative decay is a competition mechanism,
having a resonance situation is not a guarantor of efficient
energy transfer. However, in affecting energy transfer we
want the resonance to be located in the spectral region where
there is the most overlap between donor and acceptor bands.

10°F
b(A)
3L DbiA)
10
R1 75
10" + 50
25
10'1'
1 | 1 ] 1 1
0o 1 2 3 4 5 6

V)
FIG. 8. Enhancement ratio as a function of energy for fixed donor and ac-
ceptor positions arranged in a collinear geometry. Curves are presented for
several values of the semiminor axis & for semimajor axis @ = 100 A

1076}

r
(arb
units)

1078

107101

0 2

FIG. 9. Damping rate as a function of energy of the molecular resonance for

1 |
twleVv) 4 6

several shapes of the solid. Here a = 100 A and 7, = 125 A, in a collinear

arrangement.

This need not necessarily coincide, e.g., with the donor emis-
sion band itself. Thus, to some extent, it is possible to “tune”
the structure to optimize energy transfer while not at the
same time maximizing the nonradiative decay.

In Fig. 10 the decay rate is presented as a function of
molecular location on a spheroidal surface as in Fig. 7.
Curves are presented for several values of the molecular res-
onance energy. Some structure is seen as the angular position
is varied, which is probably due to the coupling of the mole-
cule to the various multipolar modes of the solid. Associated
with each mode is a particular angular pattern and, depend-
ing on the energy one of these patterns may tend to dominate
the electrodynamics.

In Fig. 11 the damping rate is plotted as a function of
dipole orientation 6, for several locations on a spheroidal
surface. Some sensitivity of the orientation of the dipole rela-
tive to the spheroid and its model structure are again noted.
As in Fig. 10, the spheroidal surface is taken as one which

fwleV)

0.89

1.0 0.8 0.6

—
04 0.2 o

FIG. 10. Damping rate as a function of the molecular location on a spheroi-
dal surface. Curves are shown for several energies.
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FIG. 11. Damping rate as a function of molecular dipole orientation angle
0, for several locations on a spheroidal surface.

passes within 25 A of the particle along the symmetry axis.

In addition to nonradiative decay there is also enhanced
radiative decay. This comes about because the dipole that is
induced in the particle adds coherently to the donor dipole
and leads to a system dipole which may be much larger than
the molecular dipole. Since the decay rate goes as the square
of this dipole, radiative decay can be significant. These ef-
fects have been considered by us'' in a previous work for the
case of a collinear geometry.
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